Eksempel på parabel...

Matematik på Beckhams scoring fra midterlinjen

 

Hvis vi ser bort fra vindmostanden - så har alle kast, spring og spark form som en parabel.

Opgave

  1. Se filmen
  2. Sparket kan udtrykkes f(x)=-0.011x2+0.65x (hvad betyder f(x))
    1. x er meter.
  3. Hvor højt kommer bolden op på det højeste sted.
  4. Vurder ud fra forskriften og sparket hvor langt der er fra midterlinien til målet.
    1. Målet er 2,44 meter højt

 

 

 

Løsning:

  • Find ud af hvad du ved på forhånd
    • Du ved at parabelen er negativ, dvs. benene vender nedaf
    • Du ved at toppunket ligger uden for y-aksen da b har en værdi.
      • Jeg ved også at toppunktet må ligge til højre for y-aksen da a er negativ og b er positiv.

Skriv ned hvad a, b og c er: (så skal du blot senere sætte ind i formlen)

a=-0,011 b=0,65 c=0

  1. Find topx
  2. Find topy
  3. Find skæringspunkter med y-aksen.

Topx=-frac {b}{2a} = -frac {0,65}{2cdot -0,011} = 29,545  Så sætter jeg 29,545 ind i formlen for at beregne y: -0,011*(29,545)2+0,65*29,545+0=9,602

Dvs. toppunktet er i (29,545;9,602) Nu ved jeg:

  • At bolden efter 29,545 meter fra sparkes start er 9,602 meter oppe i luften.
  • At bolden var i 0 meters højde da sparket blev startet fordi c=0
  • At bolden rammer jorden igen efter 2·29,545=59,091 meter
    • Det ved jeg fordi at toppunkten er jo også symmetriaksen. (jeg kan også eftervise det med beregning af Diskriminanten og nulpunkter)
    • Men der er jo egentlig ikke den store grund til det, da jeg allerede ved det.
    • Men jeg tegner den også for at vise den. (det kan jeg gøre i enten mathcad eller [http:://www.geogebra.org geogebra])
grafisk billede af Beckhams feberspark
grafisk billede af Beckhams feberspark

Beregning af skæringspunkt

Først Diskriminanten

  • b2-4ac
    • D=0,652-4·-0.011·0 (dvs. sidste led bliver jo nul da der gange med nul, derfor D=b2
  • D=0.652=0,423

Så beregner jeg de to skæringspunkter Men da c=0, så må der jo være et nul punkt i (0,0)

formel for skæringspunkter er: (0,frac {-b + sqrt{D}}{2a}) og (0,frac {-b - sqrt{d}}{2a})  Jeg sætter min værdier ind (0,frac {-0.65 + sqrt{0.423}}{2cdot-0.011}) og (0,frac {-0.65 - sqrt{0.423}}{2cdot-0.011})  Hvilket giver: (0,0) og (0;59,091), men det vidste vi jo i forvejen.

Målet er 2,44 meter højt, og vi kan se på videoen at bolden dykker ned lige under overliggeren. Så gætter jeg på at en bold nok er 30 cm. i diameter. Så boldens centrum kommer nok i mål 2,30 meter over mållinien. Jeg kan aflæse på min tegning at ca. 56 meter fra Beckham der er bolden ca. 2,3 meter over målinien.

Jeg kan dog også beregne det! f(x)=ax2+bx+c

Nu putter jeg det ind jeg kender

2,3=-0,011x2+0,65x+0, nu skal jeg huske at for at kunne løse en andengradsligning skal y/f(x) være lig nul. Jeg flytter rundt! 0=-0,011x2+0,65-2,3, så skal der findes diskriminant og nulpunkter som normalt igen. D=0,321

frac {-0.65 + sqrt{0.321}}{2cdot-0.011} og frac {-0.65 - sqrt{0.321}}{2cdot-+.011}  Som giver 3,78 og 55,311

Det fortæller os at bolden er i 2,3 meters højde ved en længde på 3,78 meter og 55,311 fra David Beckham. Bolden bliver afsendt fra midterlinien, så vi kan nu udlede at banen er ca. 110 meter lang.

Længden af en international fodboldbane skal være mellem 100 og 110 meter. (Så det passer nok meget godt)!

 

 

Download

Er du udvalgt copydan skole, skal du huske at indberette fra denne hjemmeside

Kommentarer/Spørgsmål

Har du kommentarer/spørgsmål om denne opgave. Brug matematikbankens forum på https://www.facebook.com/groups/matematikbanken/. Eller send en mail til info@matematikbanken.dk

Husk er du udvalgt copydan skole, skal du huske at indberette fra denne hjemmeside.

Du skal indberette hvis:

  • Du giver eleverne link til denne/disse fil(er)
  • Printer dokumentet til eleven
  • Gemmer en digital kopi, som så udleveres til eleverne
  • Viser et powerpoint for elever

SE mere på www.tekstognode.dk

”Eksemplarfremstilling af digital/papirkopier/prints fra denne hjemmeside til undervisningsbrug på uddannelsesinstitutioner og intern administrativ brug er tilladt med en aftale med Copydan Tekst & Node. Eksemplarfremstillingen skal ske inden for de rammer, der er nævnt i aftalen.”



Sidst opdateret d. 2012-09-01 af Morten Graae