Parabel...

Noget om parablen og 2. gradsfunktioner

 

a-værdi

  • Hvis a = 0, så er det ikke længere en parabel men blot en linær funktion y=bx+c
  • Hvis a er negativ er parablen også "negativ" - grenene vender nedad ligesom mundvigene i en negativ smiley.
  • Hvis a er positiv er parablen også "positiv" - grenene vender opad ligesom mundvigene i en glad smiley.
  • Jo tættere a er på nul jo fladere er "smilet"
  • Jo længere væk a er fra nul jo stejlere er parablen
  • Hvis b er forskellig fra nul, så har en ændring af a-værdien også betydning for toppunktets placering.

b-værdi

  • Hvis b=0 så ligger toppunktet på y-aksen i (0,c)
  • Hvis b=0 så er der ingen grund til at udregne diskriminanten, da det er hurtigere blot at løse den som en almindelig ligning
  • Hvis b er forskellig fra nul, så ligger toppunket ikke på y-aksen - men et sted væk fra y-aksen.
  • Hvis man ændre på b, så har det også en betydning for toppunktets placering

c-værdi

  • Parablen vil altid skære i (0,c) (Fordi ganger man a og b med 0 så bliver det nul, og så er der kun c-værdien tilbage
  • ændrer man på c - så vil man forskyde toppunktet op og ned (ikke til siderne)

Toppunkt

  • Toppunktet er det højeste eller den laveste værdi i en parabel. (Hvis a er negativ er det den højeste værdi - er a positiv så der det den laveste værdi
  • I toppunktet er der en symetri-akse (spejlingsakse) (Dvs. har du fundet et punkt på den ene side af toppunktet, så behøver du ikke udregne et nyt punkt - men du kan blot spejle over.)
  • x-værdien til toppunktet udregnes med topx=frac {-b}{2a}
  • y-værdien findes nemmest ved blot at indsætte den udregnede x-værdi for topx ind i vores 2. gradsfunktion!
    • topy kan også udregnes med topy=frac {-D}{4a}
  • Toppunkt er altså (frac {-b}{2a},frac {-D}{4a})

Eksempler

Se eksempel på et spark
Se praktisk eksempel tilknyttet teori (eksempel ikke klar endnu)
Se eksempel der har tilknytning til overskud og fortjeneste (eksempel ikke klar endnu)

Toppunktets placering

  • Hvis b er forskellig fra nul, så ligger toppunktet væk fra y-aksen.
  • Hvis b=0, så ligger toppunktet i (0,c)
  • Hvis a er positiv og b er positiv, så ligger toppunket til venstre for y-aksen
  • Hvis a er negativ og b er negativ, så ligger toppunket til venstre for y-aksen
  • Hvis a er positiv og b er negativ, så ligger toppunket til højre for y-aksen
  • Hvis a er negativ og b er positiv, så ligger toppunket til højre for y-aksen

Man kan forudsige det samme, om toppunktet ligger over eller under x-aksen, men det kræver en beregning af D, så er det lige så nemt at udregne topy med det samme.

Diskriminanten

D=b2-4ac

  • Diskriminanten er et hjælpetal, som at gør, at bl.a. vi kan løse andengradsligninger

Husk:

  • Hvis b=0, så kan det ikke betale sig at udregne diskriminant
  • Hvis a eller c er lig 0, så er Diskriminanten jo kun b2
  • Når man beregner diskriminanten så skal y være lig nul
    • Hvis y har andre værdier end nul - så skal y-isoleres så y=0 (alm. ligningsregler efter Regnehiraki)

nulpunkter

Beregner hvor grafen skærer x-aksen. dvs. hvor y er lig nul.

  • Hvis D>0 så findes der 2-skæringspunkter
  • Hvis D=0, så findes er kun 1 skæringspunkt (som ligger på x-aksen)
  • Hvis d<0 så er der ingen skæringspunkter

Skæringspunkt 1=

 (0,frac{-b + sqrt{D}}{2a})

Skæringspunkt 2=

 (0,frac{-b - sqrt{D}}{2a})

Eksterne sider

Se opgaver og powerpoints på: matematikbanken

Download

Er du udvalgt copydan skole, skal du huske at indberette fra denne hjemmeside

Kommentarer/Spørgsmål

Har du kommentarer/spørgsmål om denne opgave. Brug matematikbankens forum på https://www.facebook.com/groups/matematikbanken/. Eller send en mail til info@matematikbanken.dk

Husk er du udvalgt copydan skole, skal du huske at indberette fra denne hjemmeside.

Du skal indberette hvis:

  • Du giver eleverne link til denne/disse fil(er)
  • Printer dokumentet til eleven
  • Gemmer en digital kopi, som så udleveres til eleverne
  • Viser et powerpoint for elever

SE mere på www.tekstognode.dk

”Eksemplarfremstilling af digital/papirkopier/prints fra denne hjemmeside til undervisningsbrug på uddannelsesinstitutioner og intern administrativ brug er tilladt med en aftale med Copydan Tekst & Node. Eksemplarfremstillingen skal ske inden for de rammer, der er nævnt i aftalen.”



Sidst opdateret d. 2014-08-09 af Morten Graae